Satiating effects of cocaine are controlled by dopamine actions in the nucleus accumbens core.
نویسندگان
چکیده
Intravenous cocaine intake in laboratory animals is characterized by periods of apparent drug satiety between regularly spaced earned injections. The reinforcing properties of cocaine are linked primarily to dopaminergic neurotransmission in the shell and not the core of nucleus accumbens. To determine whether the satiating effects of cocaine are similarly mediated, we perfused dopamine receptor agonists into the core or the shell during intravenous cocaine self-administrations by rats. Neither D1-type (SKF38393) nor D2-type (quinpirole) agonist was effective when given alone. However, a combination of the two agonists perfused into the core but not the shell significantly increased the time between cocaine self-injections, decreasing the amount of earned intake. Together with previous findings, the current data suggest that the satiating and reinforcing effects of cocaine are mediated by different ventral striatal output neurons.
منابع مشابه
Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem
Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional...
متن کاملCued Reinstatement of Cocaine but Not Sucrose Seeking Is Dependent on Dopamine Signaling in Prelimbic Cortex and Is Associated with Recruitment of Prelimbic Neurons That Project to Contralateral Nucleus Accumbens Core
Background Drug cues recruit prelimbic cortex neurons that project to ipsilateral nucleus accumbens core. However, it is not known if the same is true for prelimbic cortex projections that decussate to innervate contralateral nucleus accumbens core. Further, a role for prelimbic cortex dopamine signaling in cued reinstatement of cocaine seeking has not been shown. Methods We assessed Fos expr...
متن کاملWhole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons.
The nucleus accumbens is a forebrain region that mediates cocaine self-administration and withdrawal effects in animal models of cocaine dependence. Considerable evidence suggests an important role of dopamine D1 receptors in these effects. Using a combination of current-clamp recordings in brain slices and whole-cell patch-clamp recordings from freshly dissociated neurons, we found that nucleu...
متن کاملRewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex.
Rats learned to lever-press when such behavior was reinforced by microinjections of phencyclidine (PCP) directly into the ventromedial (shell) region of nucleus accumbens, indicating that the drug has direct rewarding actions in that region. Separate groups of rats learned to lever-press when reinforced with microinjections of dizoclipine (MK-801) or 3-((+/-)2-carboxypiperazin-4yl)propyl-1-phos...
متن کاملDissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats.
The dopaminergic innervation of the nucleus accumbens is generally agreed to mediate the primary reinforcing and locomotor effects of psychostimulants, but there is less consensus on conditioned dopamine (DA) release during drug-seeking behavior. We investigated the neurochemical correlates of drug-seeking behavior under the control of a drug-associated cue [a light conditioned stimulus (CS+)] ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 49 شماره
صفحات -
تاریخ انتشار 2011